6 resultados para SNP chip

em DigitalCommons@The Texas Medical Center


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Following posterior fossa surgery for resection of childhood medulloblastoma and primitive neuroectodermal tumor (M/PNET), cerebellar mutism (CM) may develop. This is a condition of absent or diminished speech in a conscious patient with no evidence of oral apraxia, which can be accompanied by other symptoms of the posterior fossa syndrome complex, which includes ataxia and hypotonia. Little is known about the etiology. Therefore, we conducted a SNP, gene, and pathway-level analysis to assess the role of host genetic variation on the risk of CM in M/PNET subjects following treatment. Cases (n= 20) and controls (n= 53) were recruited from the Childhood Cancer Epidemiology and Prevention Center, in Houston, TX. DNA samples were genotyped using the Illumina Human 1M Quad SNP chip. Ten pathways were identified from logistic regression used to identify the marginal effect of each SNP on CM risk. The minP test was conducted to identify associations between SNPs categorized to genes and CM risk. Pathways were assessed to determine if there was a significant enrichment of genes in the pathway compared to all other pathways. There were 78 genes that reached the threshold of min P ≤0.05 in 948 genes. The Neurotoxicity pathway was the most significant pathway after adjusting for multiple comparisons (q=0.040 and q=0.005, using Fisher's exact test and a test of proportions, respectively). Most genes within the Neurotoxicity pathway that reached a threshold of minP ≤0.05 were known to have an apoptosis function, possibly inducing neuronal apoptosis in the dentatothalamocortical pathway, and may be important in CM etiology in this population. This is the first study to assess the potential role of genetic risk factors on CM. As an exploratory study, these results should be replicated in a larger sample. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a "cosmopolitan" tagging approach to capture the genetic diversity across approximately 2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With hundreds of single nucleotide polymorphisms (SNPs) in a candidate gene and millions of SNPs across the genome, selecting an informative subset of SNPs to maximize the ability to detect genotype-phenotype association is of great interest and importance. In addition, with a large number of SNPs, analytic methods are needed that allow investigators to control the false positive rate resulting from large numbers of SNP genotype-phenotype analyses. This dissertation uses simulated data to explore methods for selecting SNPs for genotype-phenotype association studies. I examined the pattern of linkage disequilibrium (LD) across a candidate gene region and used this pattern to aid in localizing a disease-influencing mutation. The results indicate that the r2 measure of linkage disequilibrium is preferred over the common D′ measure for use in genotype-phenotype association studies. Using step-wise linear regression, the best predictor of the quantitative trait was not usually the single functional mutation. Rather it was a SNP that was in high linkage disequilibrium with the functional mutation. Next, I compared three strategies for selecting SNPs for application to phenotype association studies: based on measures of linkage disequilibrium, based on a measure of haplotype diversity, and random selection. The results demonstrate that SNPs selected based on maximum haplotype diversity are more informative and yield higher power than randomly selected SNPs or SNPs selected based on low pair-wise LD. The data also indicate that for genes with small contribution to the phenotype, it is more prudent for investigators to increase their sample size than to continuously increase the number of SNPs in order to improve statistical power. When typing large numbers of SNPs, researchers are faced with the challenge of utilizing an appropriate statistical method that controls the type I error rate while maintaining adequate power. We show that an empirical genotype based multi-locus global test that uses permutation testing to investigate the null distribution of the maximum test statistic maintains a desired overall type I error rate while not overly sacrificing statistical power. The results also show that when the penetrance model is simple the multi-locus global test does as well or better than the haplotype analysis. However, for more complex models, haplotype analyses offer advantages. The results of this dissertation will be of utility to human geneticists designing large-scale multi-locus genotype-phenotype association studies. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Of the over five million annual pediatric visits to U.S. emergency departments, one-third to one-half are for non-emergent conditions. Minorities are more likely to utilize the emergency department (ED) for non-emergent conditions. Very little research has analyzed the role of illness type, perceived need, or family preferences in explaining this disparity. ^ Objectives. This study examined racial-ethnic differences in preferences for care among non-emergent users of the ED. ^ Research design. A random selection of pediatric non-emergent ED users within a single CHIP managed care plan were surveyed regarding attitudes and health care preferences. Preferences for ED utilization were analyzed by racial-ethnic category, controlling for illness type, child and guardian age, education level, language, and perceived need. ^ Results. A total of 250 families were surveyed. Most respondents reported having a regular doctor, satisfaction with their physician, and ready access to their physician. Fifteen percent of White, 39% of Hispanic, and 38% of Black families reported they preferred the emergency department for ill care. In multivariate analysis, Whites families were significantly less likely to prefer the emergency department for ill visits (odds ratio, 0.12; 95% confidence interval 0.03-0.55) compared to Blacks and Hispanics. ^ Conclusions. Racial-ethnic disparities in non-emergent ED utilization may be partially explained by different preferences for care. ^ Key words: children, emergency department, preferences for care, disparities ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this comparative analysis of CHIP Perinatal policy (42 CFR § 457) was to provide a basis for understanding the variation in policy outputs across the twelve states that, as of June 2007, implemented the Unborn Child rule. This Department of Health and Human Services regulation expanded in 2002 the definition of “child” to include the period from conception to birth, allowing states to consider an unborn child a “targeted low-income child” and therefore eligible for SCHIP coverage. ^ Specific study aims were to (1) describe typologically the structural and contextual features of the twelve states that adopted a CHIP Perinatal policy; (2) describe and differentiate among the various designs of CHIP Perinatal policy implemented in the states; and (3) develop a conceptual model that links the structural and contextual features of the adopting states to differences in the forms the policy assumed, once it was implemented. ^ Secondary data were collected from publicly available information sources to describe characteristics of states’ political system, health system, economic system, sociodemographic context and implemented policy attributes. I posited that socio-demographic differences, political system differences and health system differences would directly account for the observed differences in policy output among the states. ^ Exploratory data analysis techniques, which included median polishing and multidimensional scaling, were employed to identify compelling patterns in the data. Scaled results across model components showed that economic system was most closely related to policy output, followed by health system. Political system and socio-demographic characteristics were shown to be weakly associated with policy output. Goodness-of-fit measures for MDS solutions implemented across states and model components, in one- and two-dimensions, were very good. ^ This comparative policy analysis of twelve states that adopted and implemented HHS Regulation 42 C.F.R. § 457 contributes to existing knowledge in three areas: CHIP Perinatal policy, public health policy and policy sciences. First, the framework allows for the identification of CHIP Perinatal program design possibilities and provides a basis for future studies that evaluate policy impact or performance. Second, studies of policy determinants are not well represented in the health policy literature. Thus, this study contributes to the development of the literature in public health policy. Finally, the conceptual framework for policy determinants developed in this study suggests new ways for policy makers and practitioners to frame policy arguments, encouraging policy change or reform. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study compared initial year trends in prenatal care and birth outcomes of women enrolled in the Texas Children's Health Insurance Program (CHIP) Perinatal program to trends in Medicaid program women. The study utilized claims data from Community Health Choice (CHC), a health plan in Harris County, Texas that provides coverage to both populations. Quarterly data was analyzed and compared for the first two years of the CHIP Perinatal program (2007-2008) to determine if outcome trends for the CHIP program improved over the outcome trends seen with those enrolled in Medicaid. Study findings indicate an increase in the quarterly prenatal care utilization for the CHIP Perinatal population from 2007 to 2008 and the associated birth weights of babies delivered also had marginal improvements during the same timeframe. Enrollees in Medicaid continued to have overall better outcomes than those enrolled within the CHIP Perinatal program. However, the study showed that the rate of improvement in both prenatal care utilization and birth outcomes were greater for the CHIP Perinatal enrollees than those enrolled in Medicaid. ^ The majority of these improvements were significant when comparing each coverage program and from year to year. Lastly, the study showed that there was a correlation between prenatal care utilization and birth outcomes. However, further analysis of the data could not conclusively indicate that access to prenatal care services provided by the CHIP Perinatal program contributed to the increases observed in utilization and birth outcomes for the study's sample population.^